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Pablo Sánchez Moreno Rényi entropy and linearization of orthogonal polynomials 2 / 39



1 Introduction

2 Linearization of classical orthogonal polynomials

3 Closed expressions for the Rényi entropy
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Introduction

Aim

Aim of this work: The calculation of the Rényi entropy of the probability
density functions associated to the real families of classical orthogonal
polynomials.

Rényi entropy of order q,
(q > 0, q 6= 1):

Rq[ρ]

⇐⇒
Lq-norm:

‖ρ‖q

For a density ρ(x), x ∈ ∆ ⊆ R:

Rq[ρ] =
1

1− q
ln ‖ρ‖qq =

1

1− q
ln

∫
∆

(ρ(x))q dx
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Introduction

Rényi entropy of orthogonal polynomials

Rakhmanov’s density

The distribution of these polynomials along the orthogonality interval can
be measured by means of the spreading properties of the normalized to
unity Rakhmanov’s density:

ρn(x) =
1

d2
n

ω(x)p2
n(x)

Thus, we need to evaluate the Rényi entropy of these densities:

Rq[ρn] =
1

1− q
ln

∫
∆

(ρn(x))q dx =
1

1− q
lnWq[ρn]

where

Wq[ρn] = ‖ρn‖qq =

∫
∆

(ρn(x))q dx

is the entropic moment of order q.
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Introduction

Entropic moments of orthogonal polynomials

Entropic moments of classical orthogonal polynomials

Wq[ρn] =

∫
∆

(ρn(x))q dx =

∫
∆

(
1

d2
n

)q
(ω(x))q

(
(pn(x))2

)q
Two possible approaches:

Power expansion

(
(pn(x))2

)q
=

∞∑
i=0

aix
i

(Combinatorial approach)

Linearization(
(pn(x))2

)q
=

∞∑
i=0

cipi(x)

(Algebraic approach)
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Introduction

Combinatorial approach

This method [2010,2011]∗ uses the expansion of a power of orthogonal
polynomials, whose coefficients are given in terms of Bell polynomials:

(pn(x))r =

nr∑
i=0

r!

(i+ r)!
Bi+r,r (b0, 2!b1, . . . , (i+ 1)!bi)x

i

where r ∈ N, bi are the coefficients in the expansion pn(x) =
∑n

i=0 bix
i,

and the Bell polynomials are defined as

Bm,l(x1, . . . , xm−l+1) =
∑
π̂(m,l)

m!

j1! . . . jm−l+1!

(x1
1!

)j1
. . .

(
xm−l+1!

(m− l + 1)!

)jm−l+1

,

where the sum runs over all the partitions π̂(m, l) such that

j1 + j2 + · · ·+ jm−l+1 = l, and j1 + 2j2 + · · ·+ (m− l+ 1)jm−l+1 = m.

∗ PSM, J.S. Dehesa, et al; JCAM 233 (2010) 2136; J. Phys. A 43 (2010) 305203;

JCAM 235 (2011) 1129.
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Introduction

Combinatorial approach

Notice now that, taking into account that q > 0, in general we have(
(pn(x))2

)q
= (pn(x))2q

only if q ∈ N.

Then, we can evaluate the Rényi entropy Rq[ρn] only for positive integer
values of q.
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Introduction

Combinatorial approach

In the case of the Hermite polynomials, the entropic moment of order
q ∈ N, q > 1, can be expressed as

Wq[ρn] =

nq∑
i=0

Γ
(
i+ 1

2

)
qi+

1
2

(2q)!

(2i+ 2q)!
B2i+2q,2q(b0, 2!b1, . . . , (2i+ 1)!b2i),

and the Rényi entropy is

Rq[ρn] =
1

1− q
ln

[
nq∑
i=0

Γ
(
i+ 1

2

)
qi+

1
2

(2q)!

(2i+ 2q)!
B2i+2q,2q(b0, 2!b1, . . . , (2i+ 1)!b2i),

]

where bi are the expansion coefficients of the orthonormal Hermite

polynomials: H̃n(x) =

n∑
i=0

bix
i.

Similar results are obtained for the Laguerre and Jacobi polynomials.

Pablo Sánchez Moreno Rényi entropy and linearization of orthogonal polynomials 9 / 39



Introduction

Algebraic approach

The algebraic approach [2011]∗ is based on the linearization of the power
of the classical orthogonal polynomials:(

(pn(x))2
)q

=

∞∑
i=0

cipi(x)

Then, let us study this linearization before attempting to calculate the
Rényi entropy.

∗ PSM, A. Zarzo, J.S. Dehesa. Preprint (2011).
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Linearization of classical orthogonal polynomials

Linearization of Laguerre polynomials

We use the Srivastava linearization [Astrophys. Space Sci., 1998]:

xµ
(
L(α)
n (tx)

)r
=

∞∑
i=0

ci(µ, r, t, n, α, γ)L
(γ)
i (x),

where the coefficients ci(µ, r, t, n, α, γ) are expressed as:

ci(µ, r, t, n, α, γ) = (γ + 1)µ

(
n+ α

n

)r

× F (r+1)
A

 γ + µ+ 1;

r︷ ︸︸ ︷
−n, . . . ,−n,−i

α+ 1, . . . , α+ 1︸ ︷︷ ︸
r

, γ + 1
;

r︷ ︸︸ ︷
t, . . . , t, 1

 ,

where F
(r+1)
A is a Lauricella function of type A of r + 1 variables.
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Linearization of classical orthogonal polynomials

Lauricella functions

The Lauricella function of type A is defined as:

F
(s)
A

(
a; b1, . . . , bs
c1, . . . , cs

;x1, . . . , xs

)
=

∞∑
j1,...,js=0

(a)j1+···+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj11 · · ·x
js
s

j1! · · · js!

In our case, as bi = −n, ∀i, this multiple hypergeometric sum is always
finite.
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Linearization of classical orthogonal polynomials

Linearization of Hermite polynomials

The linearization of a power of Hermite polynomials such as

(Hn(tx))r ,

for r ∈ N, can be obtained from that of the Laguerre polynomials, by
means of the relations

H2n(x) = (−1)n22nn!L
(− 1

2)
n

(
x2
)
,

and

H2n+1(x) = (−1)n22n+1n!xL
( 1
2)
n

(
x2
)
.

Then, the following three possible cases are in order.
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Linearization of classical orthogonal polynomials

Case 1: Even degree

In this case, the power of Hermite polynomials can be expressed as the
following power of Laguerre polynomials:

(H2n(tx))r = An,r

(
L

(− 1
2)

n (t2x2)

)r
.

where
An,r = (−1)nr22nr(n!)r.

Now, the previous linearization of the Laguerre polynomials yields

(H2n(tx))r = An,r

(
L

(− 1
2)

n (t2x2)

)r
= An,r

nr∑
i=0

ci

(
0, r, t2, n,−1

2
,−1

2

)
L

(− 1
2)

i

(
x2
)
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Linearization of classical orthogonal polynomials

Case 1: Even degree

Finally, we express the Laguerre polynomial L
(− 1

2)
i

(
x2
)

in terms of a
Hermite polynomial:

(H2n(tx))r = An,r

nr∑
i=0

ci

(
0, r, t2, n,−1

2
,−1

2

)
L

(− 1
2)

i

(
x2
)

= An,r

nr∑
i=0

ci

(
0, r, t2, n,−1

2
,−1

2

)
1

Ai,1
H2i(x)

= An,r

(
n− 1

2

n

)r nr∑
i=0

F
(r+1)
A

( 1
2
;−n, . . . ,−n,−i

1
2
, . . . , 1

2
, 1
2

; t2, . . . , t2, 1

)
1

Ai,1
H2i(x),

which is the wanted linearization relation.
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Linearization of classical orthogonal polynomials

Case 2: Odd degree, odd value r

In this case, the power of Hermite polynomials can be expressed in terms
of Laguerre polynomials like

(H2n+1(tx))r = Bn,rt
rxxr−1

(
L

( 1
2)
n

(
t2x2

))r
= Bn,rt

rx
(
x2
) r−1

2

(
L

( 1
2)
n

(
t2x2

))r
where

Bn,r = (−1)nr2(2n+1)rn!r.

Again, the previous linearization of the Laguerre polynomials yields

(H2n+1(tx))r = Bn,rt
rx

(2n+1)r−1
2∑
i=0

ci

(
r − 1

2
, r, t2, n,

1

2
,
1

2

)
L

( 1
2)
i

(
x2
)
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Linearization of classical orthogonal polynomials

Case 2: Odd degree, odd value r

Now, we express the Laguerre polynomial L
( 1
2)
i

(
x2
)

in terms of a Hermite
polynomial:

(H2n+1(tx))
r

= Bn,rt
r

(2n+1)r−1
2∑
i=0

ci

(
r − 1

2
, r, t2, n,

1

2
,

1

2

)
1

Bi,1
H2i+1(x)

= Bn,rt
r

(
3

2

)
r−1
2

(
n+ 1

2

n

)r

×

(2n+1)r−1
2∑
i=0

F
(r+1)
A

(
r
2 + 1;−n, . . . ,−n,−i

3
2 , . . . ,

3
2 ,

3
2

; t2, . . . , t2, 1

)
1

Bi,1
H2i+1(x),

that is the linearization relation we were looking for.
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Linearization of classical orthogonal polynomials

Case 3: Odd degree, even value r

Here, the linearization of the corresponding power of Laguerre polynomials

is now in terms of polynomials of the type L
(− 1

2)
i

(
x2
)
:

(H2n+1(tx))r = Bn,rt
rxr
(
L

( 1
2)
n

(
t2x2

))r
= Bn,rt

r
(
x2
) r

2

(
L

( 1
2)
n

(
t2x2

))r

= Bn,rt
r

(2n+1)r
2∑
i=0

ci

(
r

2
, r, t2, n,

1

2
,−1

2

)
L

(− 1
2)

i

(
x2
)
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Linearization of classical orthogonal polynomials

Case 3: Odd degree, even value r

We express the Laguerre polynomials L
(− 1

2)
i

(
x2
)

in terms of even-degree
Hermite polynomials to yield the final expression:

(H2n+1(tx))r = Bn,rt
r

(2n+1)r
2∑
i=0

ci

(
r

2
, r, t2, n,

1

2
,−1

2

)
1

Ai,1
H2i(x)

= Bn,rt
r

(
1

2

)
r
2

(
n+ 1

2

n

)r

×

(2n+1)r
2∑
i=0

F
(r+1)
A

(
r+1

2 ;−n, . . . ,−n,−i
3
2 , . . . ,

3
2 ,

1
2

; t2, . . . , t2, 1

)
1

Ai,1
H2i(x),

that is the wanted linearization relation.
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Linearization of classical orthogonal polynomials

Linearization of Hermite polynomials: Summary

Even degree:

(H2n(tx))
r = An,r

(
n− 1

2

n

)r nr∑
i=0

F
(r+1)
A

(
1
2
;−n, . . . ,−n,−i

1
2
, . . . , 1

2
, 1
2

; t2, . . . , t2, 1

)
1

Ai,1
H2i(x)

Odd degree, odd r:

(H2n+1(tx))
r = Bn,rt

r

(
3

2

)
r−1
2

(
n+ 1

2

n

)r

×

(2n+1)r−1
2∑

i=0

F
(r+1)
A

(
r
2
+ 1;−n, . . . ,−n,−i

3
2
, . . . , 3

2
, 3
2

; t2, . . . , t2, 1

)
1

Bi,1
H2i+1(x),

Odd degree, even r:

(H2n+1(tx))
r = Bn,rt

r

(
1

2

)
r
2

(
n+ 1

2

n

)r

×

(2n+1)r
2∑

i=0

F
(r+1)
A

(
r+1
2

;−n, . . . ,−n,−i
3
2
, . . . , 3

2
, 1
2

; t2, . . . , t2, 1

)
1

Ai,1
H2i(x),
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Linearization of classical orthogonal polynomials

Linearization of Jacobi polynomials

In the case of the Jacobi polynomials, H.M. Srivastava [Astrophys. Space
Sci., 1998] obtained the expression:

xµ
(
P (α,β)
n (1− 2x)

)r
=

(
n+ α

n

)r
(γ+1)µ

∞∑
i=0

(γ + δ + 2i+ 1)(−µ)i
(γ + 1)i(γ + δ + i+ 1)µ+1

×F 2:2;...,2
2:1;...;1

 µ+ 1, γ + µ+ 1 :

r︷ ︸︸ ︷
−n, α+ β + n+ 1; . . . ;−n, α+ β + n+ 1

µ− i+ 1, γ + δ + µ+ i+ 2 : α+ 1; . . . ;α+ 1︸ ︷︷ ︸
r

;

r︷ ︸︸ ︷
1, . . . , 1


× P (γ,δ)

i (1− 2x)

where F is a Srivastava-Daoust generalized hypergeometric function of r
variables.
We are interested in the case µ = 0.
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Linearization of classical orthogonal polynomials

Srivastava-Daoust function

This function is defined as

F 2:2;...,2
2:1;...;1

 µ+ 1, γ + µ+ 1 :

r︷ ︸︸ ︷
−n, α+ β + n+ 1; . . . ;−n, α+ β + n+ 1

µ− i+ 1, γ + δ + µ+ i+ 2 : α+ 1; . . . ;α+ 1︸ ︷︷ ︸
r

;

r︷ ︸︸ ︷
1, . . . , 1


=

n∑
j1,...,jr=0

(µ+ 1)j1+···+jr(γ + µ+ 1)j1+···+jr
(µ− i+ 1)j1+···+jr(γ + δ + µ+ i+ 2)j1+···+jr

× (−n)j1(α+ β + n+ 1)j1 · · · (−n)jr(α+ β + n+ 1)jr
(α+ 1)j1 · · · (α+ 1)jrj1! · · · jr!

Notice that for µ = 0 this function may not be well defined.
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Linearization of classical orthogonal polynomials

Coefficient of the linearization for µ = 0

The coefficient of the linearization formula can be expressed as(
n+ α

n

)r
(γ + 1)µ

(γ + δ + 2i+ 1)(−µ)i
(γ + 1)i(γ + δ + i+ 1)µ+1

×
n∑

j1,...,jr=0

(µ+ 1)j1+···+jr(γ + µ+ 1)j1+···+jr
(µ− i+ 1)j1+···+jr(γ + δ + µ+ i+ 2)j1+···+jr

× (−n)j1(α+ β + n+ 1)j1 · · · (−n)jr(α+ β + n+ 1)jr
(α+ 1)j1 · · · (α+ 1)jrj1! · · · jr!

The indetermination comes from the quotient
(−µ)i

(µ− i+ 1)j1+···+jr
.
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Linearization of classical orthogonal polynomials

Coefficient of the linearization for µ = 0

This indetermination can be fixed by considering the Slater formula (1966):

(−µ)i(µ+ 1)j1+···+jr
(γ + 1)i(µ− i+ 1)j1+···+jr

= 2F1

(
γ + µ+ j1 + · · ·+ jr + 1,−i

γ + 1
; 1

)
By inserting this result in the linearization coefficient and taking µ = 0, we
have(

n+ α

n

)r γ + δ + 2i+ 1

γ + δ + i+ 1

n∑
j1,...,jr=0

i∑
jr+1=0

(γ + 1)j1+···+jr+jr+1

(γ + δ + i+ 2)j1+···+jr

×
(−n)j1(α+ β + n+ 1)j1 · · · (−n)jr(α+ β + n+ 1)jr(−i)jr+1

(α+ 1)j1 · · · (α+ 1)jr(γ + 1)jr+1j1! · · · jr!jr+1!

However, this generalized hypergeometric series is not a Srivastava-Daoust
function.
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Linearization of classical orthogonal polynomials

Linearization of Jacobi polynomials

Finally, the desired linearization formula can be written as(
P (α,β)
n (x)

)r
=

nr∑
i=0

c̃i(r, n, α, β, γ, δ)P
(γ,δ)
i (x),

where

c̃i(r, n, α, β, γ, δ)

=

(
n+ α

n

)r γ + δ + 2i+ 1

γ + δ + i+ 1

n∑
j1,...,jr=0

i∑
jr+1=0

(γ + 1)j1+···+jr+jr+1

(γ + δ + i+ 2)j1+···+jr

×
(−n)j1(α+ β + n+ 1)j1 · · · (−n)jr(α+ β + n+ 1)jr(−i)jr+1

(α+ 1)j1 · · · (α+ 1)jr(γ + 1)jr+1j1! · · · jr!jr+1!

Pablo Sánchez Moreno Rényi entropy and linearization of orthogonal polynomials 26 / 39



Closed expressions for the Rényi entropy
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Closed expressions for the Rényi entropy

Rényi entropy of Hermite polynomials

Let us use the linearization of the Hermite polynomials to find a better
expression for the Rényi entropy.

The entropic moments for these polynomials are defined as

Wq[ρn] =

∫ ∞
−∞

(2nn!
√
π)−qe−qx

2
(

(Hn(x))2
)q
dx.

First, we perform the change of variable
√
qx = y, that yields

Wq[ρn] =
(2nn!

√
π)−q

√
q

∫ ∞
−∞

e−y
2

(
Hn

(
y
√
q

))2q

dx.
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Closed expressions for the Rényi entropy

Rényi entropy of Hermite polynomials: Even degree

Now, the linearization of the Hermite polynomials with even degree yields(
H2n

(
y
√
q

))2q

= An,2q

(
n− 1

2

n

)2q

×
2nq∑
i=0

F
(2q+1)
A

(
1
2 ;−n, . . . ,−n,−i

1
2 , . . . ,

1
2 ,

1
2

;
1

q
, . . . ,

1

q
, 1

)
1

Ai,1
H2i(y).

Once applied the previous integral, the only term different from zero is
that with i = 0. Thus,

Entropic moment of order q of Hermite polynomials: Even degree

Wq[ρ2n] = (22n(2n)!
√
π)−q

√
π

q

An,2q
A0,1

(
n− 1

2

n

)2q

× F (2q+1)
A

(
1
2 ;−n, . . . ,−n, 0

1
2 , . . . ,

1
2 ,

1
2

;
1

q
, . . . ,

1

q
, 1

)
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Closed expressions for the Rényi entropy

Rényi entropy of Hermite polynomials: Even degree

Now, the linearization of the Hermite polynomials with even degree yields(
H2n

(
y
√
q

))2q

= An,2q

(
n− 1

2

n

)2q

×
2nq∑
i=0

F
(2q+1)
A

(
1
2 ;−n, . . . ,−n,−i

1
2 , . . . ,

1
2 ,

1
2

;
1

q
, . . . ,

1

q
, 1

)
1

Ai,1
H2i(y).

Once applied the previous integral, the only term different from zero is
that with i = 0. Thus,

Entropic moment of order q of Hermite polynomials: Even degree

Wq[ρ2n] = (22n(2n)!
√
π)−q

√
π

q

An,2q
A0,1

(
n− 1

2

n

)2q

× F (2q)
A

(
1
2 ;−n, . . . ,−n

1
2 , . . . ,

1
2

;
1

q
, . . . ,

1

q

)
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Closed expressions for the Rényi entropy

Rényi entropy of Hermite polynomials: Even degree

With this result, we can write the Rényi entropy:

Rényi entropy of Hermite polynomials: Even degree

Rq[ρ2n] =
1

1− q
ln

[
(22n(2n)!

√
π)−q

√
π

q

An,2q
A0,1

(
n− 1

2

n

)2q

×F (2q)
A

(
1
2 ;−n, . . . ,−n

1
2 , . . . ,

1
2

;
1

q
, . . . ,

1

q

)]
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Closed expressions for the Rényi entropy

Rényi entropy of Hermite polynomials: Odd degree

The linearization of the Hermite polynomials with odd degree and even
power yields(

H2n+1

(
y
√
q

))2q

=
Bn,2q
qq

(
1

2

)
q

(
n+ 1

2

n

)2q

×
(2n+1)q∑
i=0

F
(2q+1)
A

(
2q+1

2 ;−n, . . . ,−n,−i
3
2 , . . . ,

3
2 ,

1
2

;
1

q
, . . . ,

1

q
, 1

)
1

Ai,1
H2i(y)

Again, only the term with i = 0 survives for the entropic moment:

Entropic moment of order q of Hermite polynomials: Odd degree
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Closed expressions for the Rényi entropy

Rényi entropy of Hermite polynomials: Odd degree

The linearization of the Hermite polynomials with odd degree and even
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Pablo Sánchez Moreno Rényi entropy and linearization of orthogonal polynomials 31 / 39



Closed expressions for the Rényi entropy

Rényi entropy of Hermite polynomials: Odd degree

The Rényi entropy has the expression:

Rényi entropy of Hermite polynomials: Odd degree

Rq[ρ2n+1] =
1

1− q
ln

[
(22n+1(2n+ 1)!

√
π)−q

√
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q

Bn,2q
qqA0,1
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2
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)2q
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, . . . ,
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q
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Closed expressions for the Rényi entropy

Rényi entropy of Laguerre polynomials

Similar expressions are found for the Rényi entropy of the Laguerre
polynomials:

Rényi entropy of Laguerre polynomials

LRq

[
ρ(α)
n

]
=

1

1− q
ln

[(
n!

Γ(α+ n+ 1)

)q Γ(αq + 1)

qαq+1

(
n+ α

n

)2q

×F (2q)
A

(
αq + 1;−n, . . . ,−n
α+ 1, . . . , α+ 1

;
1

q
, . . . ,

1

q

)]
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Closed expressions for the Rényi entropy

Rényi entropy of Jacobi polynomials

And finally, for the Jacobi polynomials:

Rényi entropy of Jacobi polynomials

Rq

[
ρ(α,β)
n

]
=

1

1− q
ln

 d
(αq,βq)
0(
d

(α,β)
n

)q c̃0 (2q, n, α, β, αq, βq)
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Closed expressions for the Rényi entropy

Rényi entropy of Jacobi polynomials

Where d(α,β)
n =

2α+β+1Γ(α+ n+ 1)Γ(β + n+ 1)

n!(α+ β + 2n+ 1)Γ(α+ β + n+ 1)
, and

c̃0(2q, n, α, β, αq, βq) =

(
n+ α

n

)2q n∑
j1,...,j2q=0

(αq + 1)j1+···+j2q
(αq + βq + 2)j1+···+j2q

×
(−n)j1(α+ β + n+ 1)j1 · · · (−n)j2q(α+ β + n+ 1)j2q

(α+ 1)j1 · · · (α+ 1)j2qj1! · · · j2q!

=

(
n+ α

n

)2q

×F 1:2;...;2
1:1;...;1

(
αq + 1 : −n, α+ β + n+ 1; . . . ;−n, α+ β + n+ 1

αq + βq + 2 : α+ 1; . . . ;α+ 1
; 1, . . . , 1

)
,

which is a Srivastava-Daoust function evaluated at unity.
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Closed expressions for the Rényi entropy

Rényi entropy of Jacobi polynomials

Then, the final expression for the Rényi entropy of the Jacobi polynomials
is

Rq

[
ρ(α,β)
n

]
=

1

1− q
ln

[
n!(α+ β + 2n+ 1)Γ(α+ β + n+ 1)

2α+β+1Γ(α+ n+ 1)Γ(β + n+ 1)

× 2αq+βq+1Γ(αq + 1)Γ(βq + 1)

(αq + βq + 1)Γ(αq + βq + 1)

(
n+ α

n

)2q

×F 1:2;...;2
1:1;...;1

(
αq + 1 : −n, α+ β + n+ 1; . . . ;−n, α+ β + n+ 1

αq + βq + 2 : α+ 1; . . . ;α+ 2
; 1, . . . , 1

)]
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Concluding remarks

Conclusions

We have obtained the Rényi entropies of the Rahkmanov densities
associated to the Hermite, Laguerre and Jacobi orthogonal
polynomials.

These quantities have been obtained by means of two methods: The
combinatorial approach, based on the Bell polynomials; and the
algebraic approach, based on the linearization of the Hermite,
Laguerre and Jacobi polynomials.

With the algebraic approach, the Rényi entropy have been obtained in

terms of Lauricella functions F
(2q)
A for the Hermite and Laguerre

polynomials, and in terms of a Srivastava-Daoust function for the
Jacobi polynomial.
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Concluding remarks

Conclusions

Differences between the combinatorial and algebraic approaches:

1 In the combinatorial approach: To evaluate the Bell polynomials, we
need to find the partitions involved in their expressions.

In the algebraic approach: We have simple multiple sums with a finite
number of elements. (Much better for symbolic computation).

2 In the combinatorial approach: The final expression of the Rényi
entropy, depends on q, the degree n and parameters of the
polynomial, and all the coefficients of its power expansion.

In the algebraic approach: The final expression of the Rényi entropy
only depends on q, the degree n and the parameters of the
polynomial.
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